W/Z + bb/jets at NLO using the Monte Carlo MCFM

 $\begin{array}{c} \textbf{John Campbell} \\ \textbf{\textit{Fermilab}} \end{array}$

In collaboration with:

R. K. Ellis

MCFM Background

- The Tevatron Run II will be sensitive to processes at the femtobarn level.
- Particularly interesting are final states involving heavy quarks, leptons and missing energy.
- MCFM aims to provide a unified description of such processes at NLO accuracy.
- The extension to NLO is made possible in many cases by the recent calculations of virtual matrix elements involving a vector boson and four partons.
- Similar philosophy, but different approach to Pythia. Whilst Pythia has the advantages of extra radiation (partially included in a NLO calculation) and showering, a fixed order MC may be viewed as theoretically cleaner.

MCFM Process List

Included at NLO

$$p\bar{p} \to W^{\pm}/Z$$
 $p\bar{p} \to W^{+} + W^{-}$
 $p\bar{p} \to W^{\pm} + Z$ $p\bar{p} \to Z + Z$
 $p\bar{p} \to W^{\pm}/Z + H$ $p\bar{p} \to W^{\pm}/Z + 1$ jet
 $p\bar{p} \to W^{\pm}/Z + g^{\star} (\to b\bar{b})$

- Various leptonic and/or hadronic decays of the bosons are included as further sub-processes.
- First NLO calculation of $W^{\pm}/Z + g^{\star}(\rightarrow b\bar{b})$ by MCFM Ellis and Veseli, hep-ph/9810489

 Campbell and Ellis, hep-ph/0006304

No NLO prediction for W/Z + 2 jets is available, but this is under construction in MCFM.

Monte Carlo Ingredients - 1

• Helicity amplitudes for the virtual and real ME's

• Many of the NLO matrix elements are obtained by crossing the ones calculated for $e^+e^- \rightarrow 4$ jets.

Bern, Dixon, Kosower and Weinzierl, Nucl. Phys. **B489** (1997) 3 Glover and Miller, Phys. Lett. **B396** (1997) 257 Campbell, Glover and Miller, Phys. Lett. **B409** (1997) 503

Monte Carlo Ingredients - 2

- Singular pieces of the real matrix elements must be identified and cancelled by an appropriate set of counter-terms.
- MCFM uses the dipole method to cancel the infrared divergences between real and virtual contributions.

Catani and Seymour, Nucl. Phys. B485 (1997) 291

$$\sigma_{real}^{m+1} = \int_{(m+1)} (d\sigma_{real} - d\sigma_{counter}) + \int_{(m+1)} d\sigma_{counter}$$

$$= (integrable terms) + \sum_{dipoles} \int_{m} d\sigma \otimes \int_{1} dV_{dipole}$$

where the 1-dimensional integral over the dipoles leads to soft and collinear divergences (poles in ϵ).

• These poles manifestly multiply m-parton ME's and may be cancelled against poles from the loop diagrams.

Higgs search using MCFM

• Studies using LO Monte Carlos and other event generators show that for a Higgs in the mass range of 100-130 GeV, the most promising channels for discovery at Run II are associated Higgs production.

Stange, Marciano, Willenbrock, Phys. Rev. **D49** (1994) 1354, **D50** (1994) 4491

$$p\bar{p} \longrightarrow W(\to e\nu)H(\to b\bar{b})$$

 $p\bar{p} \longrightarrow Z(\to \nu\bar{\nu}, \ell\bar{\ell})H(\to b\bar{b})$

- Particularly interesting in the light of hints from LEP2.
- Backgrounds for the WH signal:

$$p\bar{p} \longrightarrow W g^{\star}(\to b\bar{b}) \qquad p\bar{p} \longrightarrow t(\to bW^{+})\bar{t}(\to \bar{b}W^{-})$$

$$p\bar{p} \longrightarrow W Z/\gamma^{\star}(\to b\bar{b}) \qquad p\bar{p} \longrightarrow W^{\pm *}(t(\to bW^{+})\bar{b})$$

$$qg \longrightarrow q't(\to bW^{+})$$

Results for Wbb

- Use a set of "standard" cuts from the literature, appropriate for the WH study and MRS98 parton distribution functions.
- $m_{b\bar{b}}$ distribution at LO and NLO, scale of 100 GeV.

• The shape changes very little and the K-factor ≈ 1.5

Signal and Backgrounds for $m_H=110~{ m GeV}$

- Double b-tagging efficiency of $\epsilon_{b\bar{b}} = 0.45$
- Extraction of the signal requires detailed knowledge of the normalization and the kinematics of the backgrounds.

Results for Zbb

- New results include radiative corrections, relevant for a further Higgs search in the channel ZH.
- The required matrix elements are very similar to the $Wb\bar{b}$ case,

with additional contributions from gg initial states.

The gg sub-process

• A $b\bar{b}$ pair with a large invariant mass can be produced by the gg initial state process, without off-shell propagators. This gives rise to a large contribution that is important for searches.

$m_{b\bar{b}}$ mass distribution for Zbb

• For a 'conventional' scale of 100 GeV, there is a large K-factor in the region of interest, around 1.8.

• The entire distribution is changed both in shape and normalization.

W+2 jets: work in progress

• View the W+2 jets process as an extension of the $Wb\bar{b}$ and $Zb\bar{b}$ calculations already performed:

•
$$Wb\bar{b}$$
 – part of $q\bar{q} \to W + q'\bar{q}'$

- $Zb\bar{b}$ contains $gg \to Z + q\bar{q} + \text{crossings}$
- There are extra parton configurations that we must count.
- The contribution from the diagrams that include real radiation must incorporate the extra singularities due to more configurations of soft/collinear gluons and collinear quark pairs.

W + 2 jets: strategy

$$|\mathcal{M}_{NLO}(Vq\bar{q}gg)|^2 \sim 1 \leftarrow \text{Near completion} + \frac{1}{N^2} + \frac{1}{N^4}$$

$$|\mathcal{M}_{NLO}(Vq\bar{q}Q\bar{Q})|^2 \sim \frac{1}{N} + \frac{1}{N^3} \leftarrow \text{Next target} + \frac{1}{N^5} + \frac{1}{N^5} + \frac{1}{N^5} \times \delta_{qQ} + \dots$$

• Emphasis on W + 2 jet first

Conclusions

- Large radiative corrections to the $Wb\bar{b}$ and $Zb\bar{b}$ processes can significantly change estimates of the backgrounds to the processes $p\bar{p} \to WH$ and $p\bar{p} \to ZH$, which will be important search channels at the Tevatron.
- Work is still ongoing in the area of W/Z + 2 jet production, for which first results should be available soon.
- MCFM may be downloaded from

http://www-theory.fnal.gov/people/campbell/mcfm.html

